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Electromagnetic Tail Radiation in Nonflat Spacetimes 
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The Green's function of the electromagnetic wave equation in an arbitrary space- 
time is expanded in geodesic coordinates in order to evaluate the tail--the part 
of the Green's function which does not propagate on the null cone. It is concluded 
that, to first order in the Riemann tensor, the tail contribution is constant. The 
electromagnetic power radiated from an accelerated charged particle follows the 
null cone, i.e., satisfies Huygens' principle, and is the same as if the Riemann 
tensor were zero. Electromagnetic radiation from compact sources such as neu- 
tron stars and black-hole accretion disks may suffer the usual gravitational distor- 
tions of the null cone, but none of it arrives slower than "the speed of light." 

1. I N T R O D U C T I O N  

The problem of  whether an arbitrary second-order hyperbolic partial 
differential equat ion satisfies Huygens '  principle remains unsolved. The ques- 
tion is whether the Green 's  function o f  a second-order hyperbolic partial 
differential equat ion has support  only on the null cone itself (i.e., satisfies 
Huygens '  principle) or  also on the interior o f  the null cone. The latter 
contr ibut ion will be called the tail of  the Green 's  function. We here restrict 
our  at tention to the wave equation in general relativity. 

Mos t  investigators have studied the scalar wave equation. [For  refer- 
ences see Friedlander (1975) and N o o n a n  (1989a), designated paper I.] 
Trea tment  o f  the vector and tensor wave equations is rare. The writer used 
expansions o f  the wave equation in Rober t son ' s  geodesic coordinates to 
prove that  vector and tensor fields satisfy Huygens '  principle if and only if 
the spacetime is fiat (Paper I and Noonan ,  1989b, designated Paper  II).  A 
similar conclusion regarding tensor fields was reached by Wfinsch (1990). 

The purpose of  the present paper is to use suitable approximations to 
evaluate the tail term of  the Green's  function o f  the wave equat ion for the 
electromagnetic field tensor in general relativity. I t  is the electromagnetic 
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field tensor, not the electromagnetic vector potential, which is chosen for 
the analysis because the electromagnetic stress-energy tensor (including the 
Poynting vector) may be obtained directly without differentiation. The 
method used here is the same as used earlier by the writer (Papers I and II), 
to expand the wave equation in Robertson's geodesic coordinates about the 
field event, i.e., the spacetime point at which the electromagnetic field is to 
be evaluated. 

The Green's function ~a G,~(P, Q) of the wave equation [equation (2) of 
Paper II] 

LF~V=S ~ (1) 

which is characterized by the solution [equation (8) there] 

F~(p)  = j" ~ ~ Q  G ,,~(P, Q)SU~(Q) d4XQ (2) 

is defined by the condition 

Ivy(P, LoG,~(P , Q)= Q) (3) 

where Iuv(P, Q) is the four-dimensional, second-rank Dirac delta function. 
a# 

[In Paper II, equation (7) has a misprint; G ~  should be LeG~v .] 

2. THE DIFFERENTIAL EQUATION FOR THE TAIL TERM 

The Green's function is written 

+D~v(P, G,v(P, Q) -  Euv(P, Q) 6[H(P, Q)] Q) (4) 

where H is the cone function defined in Paper I. (The choice of the backward 
null cone, i.e., the rejection of the forward null cone, is dictated by the desire 
to have the general Green's function reduce to the special-relativity Green's 

a# 
function, which is retarded.) The extra term Du~(P, Q) represents the tail 
of the Green's function. It is omitted in the corresponding equation (9) of 
Paper II. The substitution of equation (4) into equation (3) gives 

a/~ at3 ap + N, ~(e. S'[H(P. I,~(e. Q)=L,~(P. Q) ~[H(e. Q)] Q) Q)] 
aft aft +E.~(P, Q) AH(e, Q) ~"H(P, Q)+ ~%v(P, Q) (5) 

where 
L~v(p, Q)-LQE~v(e, Q) 

a ~  _ aft Nuv(P, Q) -  2[Eu~(P, Q)1 ;P[H(P, Q)];p 
~p + epv(e, a)[n(P, O)]fp 

AH = H ;PH;R 
a #  _ a# Tuv(P , Q) - LQDu~(P, Q) (6) 
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with the covariant derivatives evaluated at Q. The third term in equation 
(5) will be ignored because the hypersurfaces of constant H are null hypersur- 
faces. As in Paper I, we here define K =  1/4rcrc 2, where r2=yky ~ in terms of 
the spatial components y~ of the geodesic coordinates. The special relativity 
postulate of Paper I requires that E ~  have the form 

Euv(P, Q) -K[8 .~  + f  u~(P, Q)] (7) 

where f i u ~ - t ~ ,  and f u .  is an analytic, well-behaved function with no 
poles, and it vanishes in the case of flat spacetime, so that equation (7) 
reduces to the special-relativity Green's function. Since f ~  is analytic, it 
may be expanded in geodesic coordinates: 

f u~ = ~'~ "; • ! A,~Z . ,p . ,~  + O3(y) ~ p v p . r  ~ 2/lpvp~r.Y .Y (8) 

The expansions of the various functions and equations in geodesic coordi- 
nates y0= t and y~ proceed exactly as in Paper II to give 

_ t 2 ~p ~ j k ~ g~v(R uok+R~k0U) U ; ~ -  7{-~6.VRoooyr +ry [ -2A.~o+ ~ ~ ~ 

+ ~6;(RP~0~ ~ ~ ~ + R kOv)] + r (2A..oo - ~ ~ R  %0. - -~ 6;R t~oov) } 

r 2 [_2A~vo_! ~t~ 3u~,  i~p~ 3uu-  0~] 

a # _  L/./V - -  

+ Y  2 A ~ 0 k -  A;~k+ ~-~~176 -2 ~ ~ 3o~v~ok-- 35v(R t~ko+ Raok~) 

_~aa,o# TOp ~l+2.ae L.~a#o 
- - 3  utl~- vkO 1, Okv}J ; ~ t , u v O - - 3  UpvlXO0 (9) 

aft i j = - [2A. vk0 L E ~  y fi.~(RouoYY + �89 .o 

- ~6~(R ~.o~ + R ~  ~ - ~ ~  . 3,-'~,~,, v0k + R ~k0,,)] 

yiyj a~ 1 aft _ 2_t ~Boa 
+ ~ - -  [2A~,,~+ 3fi.~(Rtijk+2Ro. ) 3~Uv~ a~+f~R~a,,)] 

r 

2y ~" + T A ; ~ k + l [ ~ o o - A ; ~ + - ~ ' ~ ~ 1 7 6  e o 3~ou, ,v+6vRu)-2R~uf]  (10) 
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[For convenience in equations (9) and (10) the speed of light c is taken as 
unity.] 

.3  nr ct~ Equation (16) in Paper II is the same as,  1, ~ as given by equation (9) 
here, with the exception that the A u ~p terms are included rather than omitted. 
Also, equations (64) of Paper I, which define the Ricci tensor, were used to 
produce some simplification. 

We will retain terms of only first order in the Riemann tensor. It is 
evident t h a t f ~  and D ~  are at least first order in the Riemann tensor or 
else they would show up in the flat-spacetime Green's function, which they 
do not. Therefore the product o f f ~  or D ~  with the Riemann tensor will 
be omitted. In the expansion of equation (5) in geodesic coordinates, equa- 
tion (6) becomes 

[]Du~= Tu~ (11) 

where [] = q~'~ 02/@ u @v and r/~v is the special-relativity metric. Thus, in 
the lowest order the differential equation for the tail D ~  is the special- 
relativistic wave equation (11) with the source given by equation (5). Since 
the left-hand side of equation (5) vanishes everywhere except at Q = P, we 
have 

T , ~ -  - L , ~ 5 ( H )  - N.~5 ' (H)  (12) 

with L~,~ and N ~  given by equations (9) and (10). Equation (11) is the 
a# 

differential equation to be solved for the tail term Du~. 

3. SOLUTION FOR THE TAlL TERM 

The usual procedure in special relativity in solving a wave equation of 
the forrn of equation (11) is to use retarded potentials. However, here we 
must use advanced potentials for the following reason. It is well known that 
the Green's function for equation (l) must vanish outside the null cone. 
Therefore the tail term D ~  exists only inside the null cone. Consider Figure 
1, in which the ordinate is x ~ and the abscissa is a spatial coordinate, say x ~. 
The backward null cone C(P) with vertex P opens downward. It is desired 
to evaluate D ~  at a point Q which necessarily lies below (inside) C(P). But 
according to equation (12) the source of D ~  lies only on C(P). The only 
null cone with vertex Q which intersects C(P) is the forward null cone C'(Q), 

a~ 
which opens upward. Furthermore, the only contribution to Duv(Q) is by 

aB T~v(R), where R is a point on both C(P) and C(Q). 
The quantities which are indicated in Figure 1 are constructed as follows 

(the context is the special-relativistic or flat-spacetime approximation to the 
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Fig. 1. 
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The relationship between the backward null cone C(P) of the field event P and  the 
forward null cone ~2(Q) of an integration event Q inside C(P). 

metric at the field event P):  

v = x ~  x ~  e 

p = spatial distance between P, Q 

r = spatial distance between P, R 

s = spatial distance between Q, R 

Thus r retains the same meaning as in equations (9) and (10). Since R is on 
the backward null cone C ( P )  and on the forward null cone C(Q), we have 
the relation 

r=r-t-S 

However we do not have r = p  + s, because Figure 1 suffers the usual defect 
of trying to portray on a two-dimensional sheet of paper a relation which 
involves >2 dimensions. The points P, Q, R are not necessarily colinear. 

902/32/5-9 
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The solution to equation (11) is now 

as_ 1 ~ I  aS d v  (13) 

with the integration extending over three-dimensional spatial volume and 
the arguments of T ~  are the spatial coordinates x i (R )  and the temporal 
coordinate x ~ = x ~  + s. 

The next step (omitted here) is the rather laborious task of substituting 
equations (9), (10), and (12) and then working through the integration of 
each of the terms in equations (9) and (10). As might be expected, the result 
is rather cumbersome: 

D'~S- L ~3z'e ,i. joa,  . ~ o . ,  A~.h A.S • eykC;~k] 

3"c2--2p2 i JB,#~ + e ~S 
t0 4 y y . v i i  ~ B . vkk 

where 

T .kt'~afl • 4 . kA ,S  • 
- - ~ y  L , . v l c ~ ? y  ~ p v k - - ~ . v  (14) 

r + p  
L=loge - -  

r - p  
,~= T2--p 2 

B a p  __ gAaP 4- • aS _ 1 B a a uv i j - - - - - .vO--  3 5 . v ( R o  2R0q0)- g[Sv(R ~. +R ji.) 

" + R % ) ]  + ~ # ( R  ,~v 

.#  _2A~ho += S - ,~ Cu ;h = ~ [c~ ~ ( R  .oh + R he.) + c~ ( R  ~voh + R S~0.)] 
FCtl3 A a S  .per  I [ x c t p f l  A. - Xl3 Oa]  ~!_12a �9 t 0  I a s , . - - " ~ , . p ~ . t  - ~ t , . u . . . - v v . . z j - . . . .  +T~Su.(4Roo R )  

R = l ]PaRpa  

Equation (14) is the solution to equation (11). It must be kept in mind that, 
in the absence of boundary conditions, an arbitrary constant can be added 
to the solution of equation (11). Thus, the constant term F ~  in equation 
(14) may turn out to be an illusion. Equation (14) results from a strict 
application of the special-relativity Green's function to equation (11). 

4. TRANSFORMATION CONDITIONS ON THE TAIL TERM 

The requirement that the tail term Du~ must transform as a tensor due 
to the tensor character of  G ~ ,  at least in the special-relativistic application 
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which is valid for the geodesic coordinates being used, imposes conditions 
u# u/~ 

on the coefficients A,~ o and A, vpa which were introduced in equation (8). 
The task of performing an infinitesimal coordinate transformation of equa- 
tion (14) is a chore whose tediousness ranks on the same level as the deriva- 
tion of equation (14). The results are 

u ,  _ ( 1 5 )  A , v p - O  

uB _ ~ , ~ P r L o  I ] [ A. vpa- ~', vt 3 ,,opao -6 R p a  -t- g(q0aRop '[- q0pRoa)] 

l_ru~ I_ aft ufl aft + 2...~pa+ 2(qo~K,~po+ rlopK,~o) +Mu~qpa (16) 

where 

u~ _ L  P u 6.(R pav+R'a,v)] J p v p a - 3 [ f v ( R  p a p + R U a p , u )  -]- a fl 

KU, ~eR u -4- 6~R '  12vpa-- v v*.  p a p - -  wrp 

M ~  = set of undetermined constants 

The substitution of equations (15) and (16) into equation (14) gives 

at3 _ ap u/~ D u v -  F,~ + 2Mu~ 

Thus the tail term D ~  is a constant on the interior of the null cone and 
zero on the exterior of the null cone, and it is discontinuous at the null cone. 

5. THE CONIC CONTRIBUTION FOR A CHARGED PARTICLE 

According to equations (2), (4), (7), (8), and (15), we now have 

In geodesic coordinates we have 

x~g = 1 +~RpayPy a + O3(y) 

Thus equation (17) becomes 

4 1 UUPq_D~p ] (18) FU~(P)=fS"V(y)dY[4-~rc2a(H) ~ -  uvj 
where 

up up 
Uuv = 6,v + 2L Vvvpa "'P"~y (19) 

VUp Au. +�89 ~, I~vpa--..Izvp~y - ~ l j v R p a  (20) 
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The integrand in equation (18) contains two terms. The first term rep- 
resents an integration over the null cone. It represents the contribution to 
the field tensor which satisfies Huygens' principle, i.e., propagates on null 
geodesics. The second term represents an integration over the interior of the 
null cone. We shall treat these two effects in turn, first in this section the 
conic contribution and then in the next section the interior contribution. 

For the remainder of this section we consider equation (18) in the form 

Fa~=4rcc 5 W~P-r 6(H) d4y (21) 

where 

- v~vr;~ (22) W c t B  _ _  ~ v t a v  

Equation (21) may be immediately integrated over dy ~ to give 

- 4Jrc 2 r d3y (23) 

In our application to the case of a charged particle, we follow the 
custom of Robertson and of the writer by regarding the particle to be a 
world-tube which is shrunk to a world-line. It is emphasized that we are here 
concerned only with the particle's contribution to the right-hand side of 
equation (1). Other details, such as the equation of motion of the particle 
due to external electromagnetic fields and its own radiation reaction, and 
the particle's internal structure and rigidity, are not touched. Figure 2 shows 
the geometry. Before the particle is shrunk to a world-line, its "center" has 
world-line L (to which the world-tube will be shrunk), and another part of 
the particle has world-line L'. The field event is P, and the backward null 
cone from P is C. The world-line L intersects C at O. The spatial three- 
dimensional space contemporary with O is V. The world-line L' intersects C 
at Q and intersects V at A. 

Although the integration in equation (23) is over Q, it is easier to 
perform the integration in the space II. Therefore it is necessary to transform 
the various quantities from the event Q to the event A. The following spatial 
position vectors will be used: 

Ri=position of P relative to O 

z;= position of Q relative to O 

r i--position of P relative to Q 

w i--- position of A relative to O 
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Fig. 2. The intersection of  the world-lines of  a charged particle with the backward null cone 
of  the field event. The field event is P and its backward null cone is C. Two of the particle's 
world-lines L and L' intersect C at O and Q, respectively. 

Define also 

R - t "  
T -  (24) 

where R Z = R k R  k and r2=rkr k. That is, T is the time from O to Q. The 
motion xi( t )  of L' is expanded in a Taylor series to give 

Z i =  Wi'-} - v i T q  - l a i T 2 - F "  �9 �9 (25) 

where v ~ is the velocity of  L' at A and a ~ is the acceleration of  L' at A. We 
choose the Lorentz frame in which the velocity of L at O is zero. Then the 
velocity of L' at A is also zero, and equation (25) becomes 

z i= wi+ �89 2 + .  �9 �9 (26) 
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From the relation 

we have 

ri= R i _  z i (27) 

r = R [ 1  R kzk 7 o2( )J (28) 

The substitution of equation (28) into equation (24) gives 

T = Rkzk..[_ 02(2) 
Rc 

(29) 

The substitution of equation (29) into equation (26) gives 

z i = wiq ai(2.~kzkR Jr- 0 3(Z) (30) 
2R 2C2 

Equation (30) provides the relation between w i and z i. We next replace the 
z i in equations (28) and (29) with w i. Multiply equation (30) by R~: 

Rkz k= Rkw k+ 02(Z) (31) 

Substitute equation (31) into equations (28)-(30), respectively. We have 

r= R I  1 _ Rkwk~Y_+ O2(w)] (32) 

Rkw k 
T= + 02(.,) (33) 

Rc 

zi= wi-I ai(Rkwk)2 Jr O3(W) (34) 
2R2c 2 

From equation (32) we have 

"E 1 r=-R (35) 

There is the task of transforming the volume element in equation (23). 
We need to map the volume element dV' = d3y at Q into the volume element 
dV at A. This requires the use of the Jacobian of equation (34) : 

Oz i aiR kR " W'" 
-- 6~ ~ ~ 0 2(w) 

3W k R 2c2 
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which has determinant 

d V ' _  ~?z akRkR"W m 
d V  ~w = 1 -~ R2c2 I- O2(w) (36) 

There remains the problem that equation (23) requires that W ap be 
evaluated at Q rather than at A. Therefore we must replace W ap in equation 
(23) by 

R k w  k dWaS  
W ~ f  = W as + T dW~S - W as 4 - -  4- 0 2(w) (37) 

dt Rc  dt 

where the W as and d W ~ / d t  on the right-hand side of equation (37) are 
evaluated at A. From equation (22) we have 

d W  a~ dS  "v r;~S . . ~ , v  d U ~  
- - -  v . v _ _  ( 3 8 )  

dt dt dt 

Since the tensor S "~ is carried by parallel transport, the quantity dS~V/dt  is 
the Thomas precession and may be written 

dS uv 
-ru~.vo~ (39) 

dt 

The substitution of equations (22), (38), and (39) into equation (37) gives 

as r + 
r~,'aS _ c,~v I TraO • [ vpcr Trail • 
, ,  e - o  L ~ , , ~ . ~ - c  k a u v u p ~  - 0 2 ( w )  (40) 

dt ]J 

The next step is to find suitable expressions for U ~  and d U ~ / d t  to 
substitute into equation (40). From equation (19) we have 

U ~ - - - -  6u  vctfl q_ 1[ ot s 0 2 al 3 o k i :aS .,k.,,.1 (41) Vu~oo(Y ) + 2Vu~koy y + ~,vk,. .v y J 

We shall take the derivative of equation (41) with respect to t = y  ~ There 
arise the derivatives v i= d j / d t .  However, we have chosen a Lorentz frame 
in which v i= O. Therefore such terms will be omitted. The result is 

d U ~  = ,;~s . o•  ,z~s . k (42) 
VltvOOy i V p v k O y  

dt 

Since y" is measured from P to Q, but r i is measured from Q to P, it is 
necessary to substitute 

c c R 2 ,1 (43) 

y i=  _ r i =  _ (  R i _  w i) 
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Since an dUu~/dt enters equations (40) in a term which is already of order w, 
equations (43) in the form y 0 = _ R / c  and y i = _ R  e may be used: 

dU~v_ c_ I ~n ~z~n ok  (44) V.vooR- vuvko,, 
dt 

However, the whole of equations (43) must be used in U ~ .  The substitution 
of equations (43) into equation (41) produces three kinds of terms: 

v ~ -  up o~_, ~7o~ (45) - f i u v + A u v  w .~vvk 

where 

A ~ a -  l-r~-2rzcq3 02 -I ~n k ~z~r okom~ (46) 

aft - 2 . . a B  - - k - -  - l  r za f l  D . a _ . - - I  lZal3 O - l  o m o k . a -  r;'aB o,~ (47) 
Z l lvk  = C VltvO01~ t C VilvkOl"~ l t. V uwnOlX ~tx Ix  i r p v k m l ~ .  

Substitute equation (45) into equation (40), 

~, [~'uu - Au~ + w Z .uk+ Rc ~ - " ~ "  "P" + + 02(w) 

(48) 

Substitute equations (35), (36), and (48) into equation (23), 

f { R~wk �9 kTCtO A_ 4 , ~ R F ~ O =  d V  S "~ ~ + A ~ - ~  ~ . ~ .  R~ 

• ~A-gPCrAafl+ T + 1 +A~v) (49) 

In the corpuscular limit as the particle's world-tube shrinks to a world- 
line, equation (49) becomes 

_ ~ , ,  A <,n ~_ ~F,,,~ ] '_7  <~n ~ R_~ k 
4Jrc2RFan=cr~P+o x ~ u ~  ~ [ z~Vk'R2 

x [R ( v~.~ . - e,, " aO dU~'~ a"R" <,p 

LTt" 
where 

auv = f S "v dV 

7~ pvk~- ; S'UVw k dV 

(51) 
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The source tensor S "V which appears in equations (1) and (2) is 

S~,V = eo l(Ju;v_ j r ; , )  (52) 

For the special-relativity context of the present treatment this is 

(53) 
6o L Ox Ot J 

SO=_ ~ 
eo ~x ~ (pvj) ---Sx j ( p { )  (54) 

where p is the charge density and v i is its velocity. Conservation of charge 
implies 

a5 (pOi) = pal- (Poiok) 

where d= dvi/dt is the acceleration. Thus equation (53) becomes 

S~ I ~a~-k [p(c26~k--ffVk)]+ {C~X (55) 

When equations (54) and (55) are substituted into equations (51) ,  four 
kinds of integrals arise: 

(i) I Pai dV. 
(ii) ~ paiw j dV. 

(iii) I (OQ/Ox ~) dV. 
(iv) I (aQ/ax*)wJ dV. 

where Q is a quantity which includes the charge density. Terms of higher 
order in w i are neglected because of the character of the expansions. Case 
(i) becomes in the corpuscular limit qd, where q is the total charge. Case 
(ii) is a dipole term which will be neglected. Case (iii) is transformed by 
Gauss' theorem into a surface integral outside the particle's world-tube, 
where its density is zero. Case (iv) is transformed by Gauss' theorem: 

3 j 
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Thus, equations (51) become 

1 (7 oi .= _ __  qa  i 

EO 

a/Y=0 

vo'k = q (c26,k_ dv ~) 
80 

v/Jk= 0 

However, we are using the Lorentz frame in which #=  0, giving 

.C oik = q c2 5ik 

80 

The substitution of equations (56) into equation (50) gives 

47gC26:oRF 0i 

4 zt C2 8 o R F  hi 

where 

a i _  a ~ k o i  k -  2=.oi 
C /~Okk 

cR ~ (~o, ~ _ ~ . o ,  _~do~i~ 

+R V "~176176 d~-) 
. . . . . . . .  [ R i _ R k  -s 

+(c2• K )t~-7• 

k T h i  2,~ hi 
--  a l k o k - - C  /-,Okk 

~ r  ~ ( ~,,, ~_ ~ , , < , ^ , , ,  ~ do';;~ 
+ r  V "~176 a-5-) 

_]_(C 2 - -  m~m-,-Ahi R k  
t a 1( )/Xok 

-afl__Aap__Aall n ~ , v - ~ , v  ~v~, 

- a p  _ T a f t  _ T a f t  
Z u v k - - Z ~ p v k  Z-,v,uk 

~ a f l  _ y a f l  ap Y 
ld v --zL lAY - - l x  V/l 

- a f t _  a,O ap U u v -  U . v -  U ~  t, 

Noonan 

(56a) 

(56b) 

(56c) 

(56d) 

(56e) 

(57) 
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Evaluation of the Thomas precession by the use of the expressions in 
Robertson and Noonan (1968) gives for the quantity defined in equation 
(39) in the rest frame 

- - 0 i  Xok = 0 
Of - -  X km - s  

~hi _ 6ikah_ 6~ai 
Ok-- 

Thus equations (57) become 

4JrC2 eoRF ~t~ 4~C2 eoRF~cP _ a k ~ , ~  _ 2 , ~  ~,p 
c ,r 

q q 

eRiC ( ~ m X a f l  dU~kfl~ 2 . . . .  . RiC + - -  + (c + a R ) (58) R \u �9 ~,,,k a t /  

where 

F ~ -  q [c2Rg + Rk(Rfak--Rkai)] (59) 
4 zv C2 eoR 3 

F ~ -  q (R'ah--Rhd) (60) 
4~rceoR 2 

Equation (58) forms the principal result of this section. For the left- 
hand side we have in the special-relativity limit 

F ~ Ei 

Fh f = c2e( hij ) B j (61) 

(Robertson and Noonan, 1968), where Ef is the electric field intensity and 
Bi is the magnetic induction. The right-hand side of equation (58) contains 
two parts. The classical (non-Riemannian) result is represented by F~ ~, 
which is given by equations (59) and (60). The remaining terms in equation 
(58) represent the effect of a nonzero Riemann tensor. The Riemann effect 
is included by using equation (16) to find ~ A.vp~, which in turn is used in 

u~ equation (20) to obtain V.v;~. The latter is used in equations (46) and (47) 
to find A ~  and ~ Z~k ,  which (in their antisymmetric forms A~-~ and Z~k)-~t~ 
appear in equation (58). 

The classical terms deserve special comment. From equations (59)-(61) 
we have 

Ei-  q IRi Rk 1 4tcr 3 + ~T ( Riak - Rkai) (62) 

e(hij)Bj- Poq (Riah_ Rl, ai ) (63) 
4~cR 2 
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These are the expressions for the electric field and the magnetic field of an 
accelerated charged particle in the rest frame as given by Panofsky and 
Phillips (1955, pp. 299, 300). The first term in equation (62) is the Coulomb 
force. Equation (63) and the second term in equation (62) are the radiation 
terms which represent the radiation from an accelerated charge. Two features 
of the classical equations (62) and (63) may be noted. First, it is seen in the 
derivation that the magnetic field of equation (63) arises from the Thomas 
precession of the charged particle. Without the Thomas precession the mag- 
netic field would vanish. Second, to the writer's knowledge, the present 
treatment is the only derivation of the electric field and the magnetic field of 
an accelerated charge. The usual route is to first derive the electromagnetic 
vector potential of an accelerated charge and then differentiate it. 

Equation (58) appears to suffer a divergence problem. When one consid- 
ers the dependence of the various quantities on R, the distance of the field 
point from the charged particle, remembering that up ~p Z~vk and dU~v/dt vary 
with R and A ~  varies with R 2, one finds terms which vary as R -1, R ~ R 1, 
and R 2. It is the latter category of term which appears to create a divergence, 
i.e., E~ and Bi would increase with R. This situation is a result of the expan- 
sion in geodesic coordinates where each successive term has a higher power 
of the coordinates. This problem will be avoided by evaluating various quan- 
tities at small values of R. 

6. THE INTERIOR CONTRIBUTION FOR A 
CHARGED PARTICLE 

The preceding section treated the first term in the integrand of equation 
(18). The present section treats the second term. We write 

F ~ : ~ ~'uv/3 ~ d4y (64) 

Substitute equation (52) in its special-relativity form and define 

) ap = h at~ a/~ 
, u v  u l t v  - -  O vl2 

Equation (64) becomes 

F~ e = 1  I j , , v / ~  ~ d4y 
60 d 

1 (J Duv) - J  D,v ]d4y (65) 
3 E O  
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Equation (65) applies to an arbitrary charge distribution. The first term 
in the integrand may be transformed by means of Gauss' theorem into a 
surface integral over a three-dimensional hypersurface which encloses the 
backward null cone. Thus the only contribution to the first term is from the 
charge distribution inside the null cone in the remote past, presumably 
beyond the region of validity of the approximations used here. The second 
term in the integrand of equation (65) is nonzero only on the null cone, 
because D ~  is constant inside and outside the null cone and is discontinuous 
at the null cone. Thus the second term contributes to the conic field, i.e., the 
field which propagates on the null cone and satisfies Huygens' principle. It is 
concluded that the only non-Huygensian contribution to the electromagnetic 
field is from the charge distribution in the remote past, too early for the 
expansion in geodesic coordinates to be valid. 

For the case of a charged particle, we may evaluate the first term in 
equation (65) as follows. The Gaussian surface is chosen to be a cylinder 
surrounding the particle's world-tube with one end of the cylinder above 
(future from) the null cone and the other end far below (in the remote past 
from) the null cone. The sides of the cylinder produce no contribution 
because ju  = 0 outside the particle's world-tube. The top end of the cylinder 

ap 
produces no contribution because Duv =0  outside the null cone. The only 
contribution to the first term in equation (65) comes from an integral of the 
form 

1 - ~  [ '  1 
- - - D u o  J*~ dV------D~Poqv k (66) 

80 ,]  80 

where v ~ is the velocity of the charge at some remote time in the past. This 
term will drop out when we later go to the limit R ~ 0. In any case equation 
(66) depends on the particle's velocity rather than its acceleration and would 
presumably contribute to the electromagnetic field of a nonaccelerated 
charged particle in a gravitational field. 

For the second term in equation (65) we have the integral 

F ~ =  1 f ~-~p.v - - -  J D u v  d4y 
80 J 

--aft where Duv is a function of the cone function H =  t + r with a discontinuity 
at H = O. Integration past the discontinuity gives 

F ~ e = l  ~ o j u  d 3 y _ C  -ctfl D uk jU __ d3 y 
EO 8 o r 

where - ~ ~ Du~ is constant and the integration is over the spatial volume d3y for 
the integrands evaluated on the null cone. If  one follows an analysis similar 
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to what was done in the previous section, one would transform the volume 
element by means of equation (34), replace yk with - -Rk+  W k, use equation 
(35) for l / r ,  and replace J~ by J"  + TdJU/dt .  However, when dipole terms 
of the form S P w~ d V  are neglected (and remembering to use the particle's 
rest frame) the result is 

F ~p - qcRk D ~  (67) 
s0R 

Equation (67) is the part of the electromagnetic field which is due to the tail 
term of the Green's function and propagated on the null cone. 

The results of this section may be summarized as follows: 

-~p/cRk k'~ 
e~ ~ - R - + V  ) (58) 

q 

We conclude this section by gathering together the results of this and 
the previous section. The electromagnetic field F " '  is given by 

F ~' = F~-' + F,~' (69) 

where F~ a is the classical term given by equations (59) and (60) and F~ ~ 
contains the Riemannian terms. The latter includes ' equation (68) and the 
nonclassical terms in equation (58). 

7. THE POYNTING VECTOR 

We shall evaluate the Poynting vector Pi in the neighborhood of the 
charged particle, i.e., for small values of the distance R between the field 
point and the particle. The fiat spacetime of special relativity is adequate. 
The Poynting vector is given by (Robertson and Noonan, 1968) 

P i = c2 Go 11p~ F~ P F ~ = _ ~oFOk Fki (70) 

[For the more familiar relation, substitute equation (61) and c2~0=pff t to 
obtain Pi=poJe( i jk )Ef lk . ]  Substitute equation (69) into equation (70) and 
neglect terms which are quadratic in the Riemann tensor, 

where 

P i  = cPi  -t- aPi  + bPi 

cpi= -eoF~ ki (71) 
n r0k~k~ (72) 

al~i = - -  ~Ot' C I~ R 

FOkFk i  br i=--eo  R c (73) 
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Equation (71) is the classical Poynting vector of an accelerated charge 
in its rest frame. The substitution of equations (59) and (60) gives 

q2 

cPi - -  1 6  z2 c 3 eoR 5 ( c2 [R 2ai - -  R ~R kak] + R ~[ R 2 a 2  - -  (Rka k) 2] } (74) 

The first bracket in equation (74) is a spatial vector perpendicular to the 
radius R i. It represents an energy flux associated with the electrostatic 
Coulomb field. The second bracket in equation (74) is parallel to the radius 
R i. The radial component of equation (74), 

R 

q2 

16,.c2c3~0R 4 [ R2a2-  (R~ak) 2] 

is integrated over a sphere of radius R to give the classical radiated power 

q2a2 

6Yrc 3 eo 

The use of equation (59) and the antisymmetry of F~  give for the radial 
component of equation (72) 

R k qakRiF~ " 
o P R = ~  oPg-  (75) 

4zcRR 2 

Equation (60) can be used to write the radial component of equation (73) 
in the form 

R k 
bPn = ~ 6P;~ -- q (R kR ma" - R 2a;~)F~ (76) 

4 z c R  3 

According to equations (44), (46), (47), (58), and (68), F~ ;3 contains 
terms which vary as R ~ and R j. Thus equations (75) and (76) contain terms 
which vary as R- l  and R ~ Multiplication of equations (75) and (76) by the 
area element R 2 dr2, where df~ is the solid angle, produces terms which vary 
as R ~ and R 2. In the limit R ~ 0 these terms go to zero. It is concluded that 
the power radiated from a charged particle which is accelerated in a space- 
time region of nonzero Riemann tensor is, to first order in the Riemann 
tensor, independent of the Riemann tensor. 

This is not the same as saying that the Riemann tensor produces no 
effect on the Poynting vector. The Riemann tensor does alter the energy flux 
near the accelerated charged particle. But the altered flux has the same effect 
as the classical Coulomb flux--it has no net radial component. 
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8. CONCLUSION 

The Green's function of the second-rank electromagnetic wave equation 
was expanded in geodesic coordinates subject to two conditions: (a) it 
reduces for flat spacetime to the special-relativity Green's function ; (b) only 
terms of first order in the Riemann tensor are retained; quadratic and higher 
terms are neglected. The tail Of the Green's function in nonflat spacetime is 
nonzero but is constant. Thus the electromagnetic fields at a given event are 
affected by the tail in two ways. (a) There is the part due to the discontinuity 
of the tail at the null cone; it propagates along the null cone so as to become 
a part of the Green's function which has support on the null cone, i.e., which 
satisfies Huygens' principle. (b) There is a contribution from the interior of 
the null cone in the remote past, beyond the range of the validity of the 
expansions which were used. 

For the case of an accelerated charged particle the power emitted is, to 
first order in the Riemann tensor, the same as for zero Riemann tensor, i.e., 
for flat spacetime. The radiation propagates on the null cone, i.e., satisfies 
Huygens' principle. 

It is emphasized that when we refer to a charged particle accelerated in 
a gravitational field, we are not referring to the equivalence principle. There 
is a well-known paradox of the equivalence principle which may be stated 
as follows. An insulated charged metal ball sitting on a table radiates no 
power because it is stationary, but it radiates power because the table acceler- 
ates it upward with acceleration g relative to an inertial frame in which the 
earth's gravity vanishes. This paradox has been discussed in great detail by 
Rohrlich (1965) and Boulware (1980) and will be ignored here. The applica- 
tion being considered here is where the acceleration of the charged particle 
is large compared with gravity. For example, an electron at a temperature 
of t06 K in a magnetic field of 106 T in the atmosphere of a neutron star of 
mass 1.4Mo and radius 15 km experiences a magnetic acceleration of order 
1025 m/sec 2, many times the gravitational acceleration of order 10 ~2 m/sec 2. 

It is appropriate to comment on results in the literature concerning 
electromagnetic radiation from a charged particle in curved spacetime. Riesz 
(1948) in Chapter VI derived the Lienard Wiechert potential in flat space- 
time. Couch and Halliday (1971) considered radiation from a charged par- 
ticle, but their gravitational field is due to the particle rather than being an 
ambient field as here. G/inther (1965) concluded that if Maxwell's equations 
satisfy Huygens' principle, then the Bach tensor (Giinther, 1988, p. 581), 
which depends on the tensor L~v=~Rg~v-Ruv, must vanish. DeWitt and 
Brehme (1960) obtained an expression [their equation (3.50)] for the electro- 
magnetic vector potential of a charged particle in curved spacetime and 
differentiated it to obtain an expression [their equation (3.52)] for the elec- 
tromagnetic field tensor of a charged particle, but the specific application 
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made in the present paper was not pursued there. It may be noted from their 
equation (2.59) that a necessary condition for the tail term to vanish, i.e., 
for the electromagnetic vector potential to satisfy Huygens' principle, is that 
the tensor L,v vanish (therefore spacetime be empty). This tensor plays a 
key role in many of the necessary conditions for Huygens' principle to be 
satisfied [Carminati and McLenaghan (1986), equations (1.6)-(1.8)]. 

The principal application of this paper is to electromagnetic radiation 
from compact sources such as pulsar radiation and X-rays from black-hole 
accretion. The radiation is subject to the usual effects--Einstein deflection, 
Shapiro delay, and gravitational lensing. But it is null radiation satisfying 
Huygens' principle. A sharp pulse of radiation emitted at the source will 
remain sharp, rather than suffering a dispersion in velocity. These results are 
valid to first order in the Riemann tensor. An avenue for further inquiry 
would be to carry the calculations to second order in the Riemann tensor. 
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